Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biosens Bioelectron X ; 13: 100324, 2023 May.
Article in English | MEDLINE | ID: covidwho-2265660

ABSTRACT

COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.

2.
Sens Actuators B Chem ; 377: 133052, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2122811

ABSTRACT

RNA isolation and amplification-free user-friendly detection of SARS-CoV-2 is the need of hour especially at resource limited settings. Herein, we devised the peptides of human angiotensin converting enzyme-2 (hACE-2) as bioreceptor at electrode interface for selective targeting of receptor binding domains (RBD) of SARS-CoV-2 spike protein (SP). Disposable carbon-screen printed electrode modified with methylene blue (MB) electroadsorbed graphene oxide (GO) has been constructed as cost-efficient and scalable platform for hACE-2 peptide-based SARS-CoV-2 detection. In silico molecular docking of customized 25 mer peptides with RBD of SARS-CoV-2 SP were validated by AutoDock CrankPep. N-terminal region of ACE-2 showed higher binding affinity of - 20.6 kcal/mol with 15 H-bond, 9 of which were < 3 Å. Electrochemical biosensing of different concentrations of SPs were determined by cyclic voltammetry (CV) and chronoamperometry (CA), enabling a limit of detection (LOD) of 0.58 pg/mL and 0.71 pg/mL, respectively. MB-GO devised hACE-2 peptide platform exert an enhanced current sensitivity of 0.0105 mA/pg mL-1 cm-2 (R2 = 0.9792) (CV) and 0.45 nA/pg mL-1 (R2 = 0.9570) (CA) against SP in the range of 1 pg/mL to 1 µg/mL. For clinical feasibility, nasopharyngeal and oropharyngeal swab specimens in viral transport medium were directly tested with the prepared peptide biosensor and validated with RT-PCR, promising for point-of-need analysis.

3.
Comput Biol Med ; 146: 105419, 2022 07.
Article in English | MEDLINE | ID: covidwho-1803804

ABSTRACT

Data science has been an invaluable part of the COVID-19 pandemic response with multiple applications, ranging from tracking viral evolution to understanding the vaccine effectiveness. Asymptomatic breakthrough infections have been a major problem in assessing vaccine effectiveness in populations globally. Serological discrimination of vaccine response from infection has so far been limited to Spike protein vaccines since whole virion vaccines generate antibodies against all the viral proteins. Here, we show how a statistical and machine learning (ML) based approach can be used to discriminate between SARS-CoV-2 infection and immune response to an inactivated whole virion vaccine (BBV152, Covaxin). For this, we assessed serial data on antibodies against Spike and Nucleocapsid antigens, along with age, sex, number of doses taken, and days since last dose, for 1823 Covaxin recipients. An ensemble ML model, incorporating a consensus clustering approach alongside the support vector machine model, was built on 1063 samples where reliable qualifying data existed, and then applied to the entire dataset. Of 1448 self-reported negative subjects, our ensemble ML model classified 724 to be infected. For method validation, we determined the relative ability of a random subset of samples to neutralize Delta versus wild-type strain using a surrogate neutralization assay. We worked on the premise that antibodies generated by a whole virion vaccine would neutralize wild type more efficiently than delta strain. In 100 of 156 samples, where ML prediction differed from self-reported uninfected status, neutralization against Delta strain was more effective, indicating infection. We found 71.8% subjects predicted to be infected during the surge, which is concordant with the percentage of sequences classified as Delta (75.6%-80.2%) over the same period. Our approach will help in real-world vaccine effectiveness assessments where whole virion vaccines are commonly used.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Machine Learning , Pandemics , SARS-CoV-2 , Vaccines, Inactivated , Virion
4.
Elife ; 102021 04 20.
Article in English | MEDLINE | ID: covidwho-1194809

ABSTRACT

To understand the spread of SARS-CoV2, in August and September 2020, the Council of Scientific and Industrial Research (India) conducted a serosurvey across its constituent laboratories and centers across India. Of 10,427 volunteers, 1058 (10.14%) tested positive for SARS-CoV2 anti-nucleocapsid (anti-NC) antibodies, 95% of which had surrogate neutralization activity. Three-fourth of these recalled no symptoms. Repeat serology tests at 3 (n = 607) and 6 (n = 175) months showed stable anti-NC antibodies but declining neutralization activity. Local seropositivity was higher in densely populated cities and was inversely correlated with a 30-day change in regional test positivity rates (TPRs). Regional seropositivity above 10% was associated with declining TPR. Personal factors associated with higher odds of seropositivity were high-exposure work (odds ratio, 95% confidence interval, p value: 2.23, 1.92-2.59, <0.0001), use of public transport (1.79, 1.43-2.24, <0.0001), not smoking (1.52, 1.16-1.99, 0.0257), non-vegetarian diet (1.67, 1.41-1.99, <0.0001), and B blood group (1.36, 1.15-1.61, 0.001).


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/epidemiology , SARS-CoV-2/immunology , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Female , Host-Pathogen Interactions , Humans , Immunity, Humoral , India/epidemiology , Longitudinal Studies , Male , Predictive Value of Tests , Risk Assessment , Risk Factors , Seroepidemiologic Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL